Search results for "molecular dyes"

showing 2 items of 2 documents

Poor optical stability of molecular dyes when used as absorbers in water-based tissue-simulating phantoms

2019

Biomedical optical systems and models can be easily validated by the use of tissue-simulating phantoms. They can consist of water-based turbid media which often include inks (India ink and molecular dyes) as absorbers. Optical stability of commonly exploited inks under the influence of light, pH changes and the addition of TiO2 and surfactant, was studied. We found that the exposure to ultraviolet and visible light can crucially affect the absorption properties of molecular dyes. On average, absorption peaks decreased by 47.3% in 150 exposure hours. Furthermore, dilution can affect ink’s pH and by that, its decay rate under light exposure. When TiO2 was added to the phantoms, all molecular …

Materials sciencesurfactantturbid media02 engineering and technologymedicine.disease_cause01 natural sciencesIndia ink010309 opticsPulmonary surfactant0103 physical sciencesmedicinetissue-simulating phantomsmolecular dyesoptical spectroscopySpectroscopyAbsorption (electromagnetic radiation)Inkwell021001 nanoscience & nanotechnology3. Good healthDilutionoptical stabilityChemical engineering:NATURAL SCIENCES::Physics::Atomic and molecular physics [Research Subject Categories]Photocatalysis0210 nano-technologyUltravioletVisible spectrum
researchProduct

Hybrid Inorganic‐Organic White Light Emitting Diodes

2020

This chapter reviews the state of the art of materials, technologies, characterizations, process and challenges concerning hybrid white light‐emitting diodes (LEDs). Here, for a “hybrid LED” we mean a device based on a layer of organic phosphors (or a mix of inorganic and organic ones) pumped by a high‐energy inorganic LED. Light is emitted by a frequency down‐conversion (sometimes simply named color‐conversion) process. Benefits and weak spots of this technology are investigated with a special attention for the materials involved into the process of frequency down‐conversion, in order to envisage the future impact of the hybrid lighting technology among the well‐established inorganic ones.

Materials sciencebusiness.industryWhite lightOptoelectronicsMetal-organic frameworkInorganic organicbusinessHybrid Inorganic-Organic White Light Emitting Diodes (HWLEDs) Frequency-down conversion Luminescent polymers and molecular dyes Biomaterials and biomolecules Metal-Organic Frameworks Carbon dots Color tuning and rendering of HWLEDs Stability of HWLEDsSettore ING-INF/01 - ElettronicaDiode
researchProduct